MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. SAE-AISI 4140 Steel

Grade CW6MC nickel belongs to the nickel alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
11 to 26
Fatigue Strength, MPa 210
360 to 650
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 540
690 to 1080
Tensile Strength: Yield (Proof), MPa 310
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 980
420
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 11
43
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 80
2.4
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
1.5
Embodied Energy, MJ/kg 200
20
Embodied Water, L/kg 290
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 240
920 to 2590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 18
25 to 38
Strength to Weight: Bending, points 17
22 to 30
Thermal Diffusivity, mm2/s 2.8
12
Thermal Shock Resistance, points 15
20 to 32

Alloy Composition

Carbon (C), % 0 to 0.060
0.38 to 0.43
Chromium (Cr), % 20 to 23
0.8 to 1.1
Iron (Fe), % 0 to 5.0
96.8 to 97.8
Manganese (Mn), % 0 to 1.0
0.75 to 1.0
Molybdenum (Mo), % 8.0 to 10
0.15 to 0.25
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040