MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. Titanium 15-3-3-3

Grade CW6MC nickel belongs to the nickel alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
5.7 to 8.0
Fatigue Strength, MPa 210
610 to 710
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 540
1120 to 1390
Tensile Strength: Yield (Proof), MPa 310
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
430
Melting Completion (Liquidus), °C 1480
1620
Melting Onset (Solidus), °C 1430
1560
Specific Heat Capacity, J/kg-K 440
520
Thermal Conductivity, W/m-K 11
8.1
Thermal Expansion, µm/m-K 12
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 80
40
Density, g/cm3 8.6
4.8
Embodied Carbon, kg CO2/kg material 14
59
Embodied Energy, MJ/kg 200
950
Embodied Water, L/kg 290
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
78 to 89
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 23
32
Strength to Weight: Axial, points 18
64 to 80
Strength to Weight: Bending, points 17
50 to 57
Thermal Diffusivity, mm2/s 2.8
3.2
Thermal Shock Resistance, points 15
79 to 98

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.060
0 to 0.050
Chromium (Cr), % 20 to 23
2.5 to 3.5
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 5.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4