MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C10700 Copper

Grade CW6MC nickel belongs to the nickel alloys classification, while C10700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C10700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
2.2 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 540
230 to 410
Tensile Strength: Yield (Proof), MPa 310
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1480
1080
Melting Onset (Solidus), °C 1430
1080
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
100
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 80
35
Density, g/cm3 8.6
9.0
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 200
42
Embodied Water, L/kg 290
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
7.9 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 240
25 to 710
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
7.2 to 13
Strength to Weight: Bending, points 17
9.4 to 14
Thermal Diffusivity, mm2/s 2.8
110
Thermal Shock Resistance, points 15
8.2 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
99.83 to 99.915
Iron (Fe), % 0 to 5.0
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.085 to 0.12
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.050