MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C18200 Copper

Grade CW6MC nickel belongs to the nickel alloys classification, while C18200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C18200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
11 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 540
310 to 530
Tensile Strength: Yield (Proof), MPa 310
97 to 450

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1480
1080
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
320
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
80
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
81

Otherwise Unclassified Properties

Base Metal Price, % relative 80
31
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
2.6
Embodied Energy, MJ/kg 200
41
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
43 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 240
40 to 860
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
9.6 to 16
Strength to Weight: Bending, points 17
11 to 16
Thermal Diffusivity, mm2/s 2.8
93
Thermal Shock Resistance, points 15
11 to 18

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0.6 to 1.2
Copper (Cu), % 0
98.6 to 99.4
Iron (Fe), % 0 to 5.0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0