MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C18600 Copper

Grade CW6MC nickel belongs to the nickel alloys classification, while C18600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
8.0 to 11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 540
520 to 580
Tensile Strength: Yield (Proof), MPa 310
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1480
1090
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
280
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
70
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
71

Otherwise Unclassified Properties

Base Metal Price, % relative 80
31
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
2.9
Embodied Energy, MJ/kg 200
46
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1060 to 1180
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
16 to 18
Strength to Weight: Bending, points 17
16 to 17
Thermal Diffusivity, mm2/s 2.8
81
Thermal Shock Resistance, points 15
19 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0
96.5 to 99.55
Iron (Fe), % 0 to 5.0
0.25 to 0.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0 to 0.25
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.050 to 0.5
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5