MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C33500 Brass

Grade CW6MC nickel belongs to the nickel alloys classification, while C33500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
3.0 to 28
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 540
340 to 650
Tensile Strength: Yield (Proof), MPa 310
120 to 420

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1480
930
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 80
24
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 200
45
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
8.0 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 240
69 to 860
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
12 to 22
Strength to Weight: Bending, points 17
13 to 21
Thermal Diffusivity, mm2/s 2.8
37
Thermal Shock Resistance, points 15
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 0 to 5.0
0 to 0.1
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
33.8 to 37.8
Residuals, % 0
0 to 0.4