MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C37700 Brass

Grade CW6MC nickel belongs to the nickel alloys classification, while C37700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C37700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 540
400
Tensile Strength: Yield (Proof), MPa 310
160

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1480
890
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
30

Otherwise Unclassified Properties

Base Metal Price, % relative 80
23
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 14
2.6
Embodied Energy, MJ/kg 200
45
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240
120
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
14
Strength to Weight: Bending, points 17
15
Thermal Diffusivity, mm2/s 2.8
39
Thermal Shock Resistance, points 15
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
58 to 61
Iron (Fe), % 0 to 5.0
0 to 0.3
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
35.7 to 40.5
Residuals, % 0
0 to 0.5