MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C43000 Brass

Grade CW6MC nickel belongs to the nickel alloys classification, while C43000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
3.0 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 540
320 to 710
Tensile Strength: Yield (Proof), MPa 310
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1480
1030
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 80
29
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 14
2.8
Embodied Energy, MJ/kg 200
46
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 240
82 to 1350
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
10 to 23
Strength to Weight: Bending, points 17
12 to 20
Thermal Diffusivity, mm2/s 2.8
36
Thermal Shock Resistance, points 15
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 0 to 5.0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.7 to 2.7
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5