MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C66300 Brass

Grade CW6MC nickel belongs to the nickel alloys classification, while C66300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
2.3 to 22
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 540
460 to 810
Tensile Strength: Yield (Proof), MPa 310
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
26

Otherwise Unclassified Properties

Base Metal Price, % relative 80
29
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 14
2.8
Embodied Energy, MJ/kg 200
46
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 240
710 to 2850
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
15 to 26
Strength to Weight: Bending, points 17
15 to 22
Thermal Diffusivity, mm2/s 2.8
32
Thermal Shock Resistance, points 15
16 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 0 to 5.0
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5