MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C83600 Ounce Metal

Grade CW6MC nickel belongs to the nickel alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
21
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 540
250
Tensile Strength: Yield (Proof), MPa 310
120

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1480
1010
Melting Onset (Solidus), °C 1430
850
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 80
31
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 14
3.1
Embodied Energy, MJ/kg 200
50
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
43
Resilience: Unit (Modulus of Resilience), kJ/m3 240
70
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
7.9
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 2.8
22
Thermal Shock Resistance, points 15
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 0 to 5.0
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0 to 1.0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7