MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C94700 Bronze

Grade CW6MC nickel belongs to the nickel alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
7.9 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 540
350 to 590
Tensile Strength: Yield (Proof), MPa 310
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1480
1030
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
54
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 80
34
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 14
3.5
Embodied Energy, MJ/kg 200
56
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
11 to 19
Strength to Weight: Bending, points 17
13 to 18
Thermal Diffusivity, mm2/s 2.8
16
Thermal Shock Resistance, points 15
12 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
85 to 90
Iron (Fe), % 0 to 5.0
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
4.5 to 6.0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3