MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C95300 Bronze

Grade CW6MC nickel belongs to the nickel alloys classification, while C95300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
14 to 25
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 540
520 to 610
Tensile Strength: Yield (Proof), MPa 310
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 11
63
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
14

Otherwise Unclassified Properties

Base Metal Price, % relative 80
28
Density, g/cm3 8.6
8.3
Embodied Carbon, kg CO2/kg material 14
3.1
Embodied Energy, MJ/kg 200
52
Embodied Water, L/kg 290
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 240
170 to 420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
17 to 21
Strength to Weight: Bending, points 17
17 to 19
Thermal Diffusivity, mm2/s 2.8
17
Thermal Shock Resistance, points 15
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
86.5 to 90.2
Iron (Fe), % 0 to 5.0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 1.0