MakeItFrom.com
Menu (ESC)

Grade CX2M Nickel vs. 4006 Aluminum

Grade CX2M nickel belongs to the nickel alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CX2M nickel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 45
3.4 to 24
Fatigue Strength, MPa 260
35 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 550
110 to 160
Tensile Strength: Yield (Proof), MPa 310
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
620
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 10
220
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.0
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.1
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 220
28 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 18
11 to 16
Strength to Weight: Bending, points 17
19 to 24
Thermal Diffusivity, mm2/s 2.7
89
Thermal Shock Resistance, points 15
4.9 to 7.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 22 to 24
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 1.5
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.4 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.8 to 1.2
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15