MakeItFrom.com
Menu (ESC)

Grade CX2M Nickel vs. 5456 Aluminum

Grade CX2M nickel belongs to the nickel alloys classification, while 5456 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CX2M nickel and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 45
11 to 18
Fatigue Strength, MPa 260
130 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 550
320 to 340
Tensile Strength: Yield (Proof), MPa 310
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
570
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
9.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 220
170 to 470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 18
33 to 35
Strength to Weight: Bending, points 17
38 to 40
Thermal Diffusivity, mm2/s 2.7
48
Thermal Shock Resistance, points 15
14 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
92 to 94.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 22 to 24
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 1.5
0 to 0.4
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.4 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15