MakeItFrom.com
Menu (ESC)

Grade CX2M Nickel vs. C46500 Brass

Grade CX2M nickel belongs to the nickel alloys classification, while C46500 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade CX2M nickel and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
100
Elongation at Break, % 45
18 to 50
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
40
Tensile Strength: Ultimate (UTS), MPa 550
380 to 610
Tensile Strength: Yield (Proof), MPa 310
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 990
120
Melting Completion (Liquidus), °C 1500
900
Melting Onset (Solidus), °C 1450
890
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 220
170 to 1170
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 18
13 to 21
Strength to Weight: Bending, points 17
15 to 20
Thermal Diffusivity, mm2/s 2.7
38
Thermal Shock Resistance, points 15
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 0 to 1.5
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.4 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4