MakeItFrom.com
Menu (ESC)

Grade CX2M Nickel vs. C67600 Bronze

Grade CX2M nickel belongs to the nickel alloys classification, while C67600 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CX2M nickel and the bottom bar is C67600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
100
Elongation at Break, % 45
13 to 33
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
40
Tensile Strength: Ultimate (UTS), MPa 550
430 to 570
Tensile Strength: Yield (Proof), MPa 310
170 to 380

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 990
120
Melting Completion (Liquidus), °C 1500
890
Melting Onset (Solidus), °C 1450
870
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
110
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 12
2.8
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
63 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 220
140 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 18
15 to 20
Strength to Weight: Bending, points 17
16 to 19
Thermal Diffusivity, mm2/s 2.7
35
Thermal Shock Resistance, points 15
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 0 to 1.5
0.4 to 1.3
Lead (Pb), % 0
0.5 to 1.0
Manganese (Mn), % 0 to 1.0
0.050 to 0.5
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.4 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.2 to 41.6
Residuals, % 0
0 to 0.5