MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. 2017 Aluminum

Grade CX2MW nickel belongs to the nickel alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 34
12 to 18
Fatigue Strength, MPa 260
90 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 620
190 to 430
Tensile Strength: Yield (Proof), MPa 350
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1550
640
Melting Onset (Solidus), °C 1490
510
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 12
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 290
41 to 470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 19
17 to 40
Strength to Weight: Bending, points 18
24 to 42
Thermal Diffusivity, mm2/s 2.7
56
Thermal Shock Resistance, points 17
7.9 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.6 to 95.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 2.0 to 6.0
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0.2 to 0.8
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15