MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. EN 1.4592 Stainless Steel

Grade CX2MW nickel belongs to the nickel alloys classification, while EN 1.4592 stainless steel belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is EN 1.4592 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
210
Elongation at Break, % 34
23
Fatigue Strength, MPa 260
340
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 84
82
Tensile Strength: Ultimate (UTS), MPa 620
630
Tensile Strength: Yield (Proof), MPa 350
500

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 980
1100
Melting Completion (Liquidus), °C 1550
1460
Melting Onset (Solidus), °C 1490
1410
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 10
17
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 65
18
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 12
3.8
Embodied Energy, MJ/kg 170
52
Embodied Water, L/kg 290
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 290
610
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
26
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 2.7
4.6
Thermal Shock Resistance, points 17
20

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.025
Chromium (Cr), % 20 to 22.5
28 to 30
Iron (Fe), % 2.0 to 6.0
62.6 to 68.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 12.5 to 14.5
3.5 to 4.5
Nickel (Ni), % 51.3 to 63
0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0.15 to 0.8
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0