MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. C17500 Copper

Grade CX2MW nickel belongs to the nickel alloys classification, while C17500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 34
6.0 to 30
Fatigue Strength, MPa 260
170 to 310
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
45
Tensile Strength: Ultimate (UTS), MPa 620
310 to 860
Tensile Strength: Yield (Proof), MPa 350
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1550
1060
Melting Onset (Solidus), °C 1490
1020
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 10
200
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 65
60
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 12
4.7
Embodied Energy, MJ/kg 170
73
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 290
120 to 2390
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 19
9.7 to 27
Strength to Weight: Bending, points 18
11 to 23
Thermal Diffusivity, mm2/s 2.7
59
Thermal Shock Resistance, points 17
11 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0
95.6 to 97.2
Iron (Fe), % 2.0 to 6.0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Residuals, % 0
0 to 0.5