MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. C46500 Brass

Grade CX2MW nickel belongs to the nickel alloys classification, while C46500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
100
Elongation at Break, % 34
18 to 50
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
40
Tensile Strength: Ultimate (UTS), MPa 620
380 to 610
Tensile Strength: Yield (Proof), MPa 350
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1550
900
Melting Onset (Solidus), °C 1490
890
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 170
47
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 290
170 to 1170
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 19
13 to 21
Strength to Weight: Bending, points 18
15 to 20
Thermal Diffusivity, mm2/s 2.7
38
Thermal Shock Resistance, points 17
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 2.0 to 6.0
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.5 to 1.0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4