MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. C66700 Brass

Grade CX2MW nickel belongs to the nickel alloys classification, while C66700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 34
2.0 to 58
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
41
Tensile Strength: Ultimate (UTS), MPa 620
340 to 690
Tensile Strength: Yield (Proof), MPa 350
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 980
140
Melting Completion (Liquidus), °C 1550
1090
Melting Onset (Solidus), °C 1490
1050
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 10
97
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
17
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 65
25
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 170
45
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 290
49 to 1900
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 19
11 to 23
Strength to Weight: Bending, points 18
13 to 21
Thermal Diffusivity, mm2/s 2.7
30
Thermal Shock Resistance, points 17
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 2.0 to 6.0
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5