MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. C95700 Bronze

Grade CX2MW nickel belongs to the nickel alloys classification, while C95700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is C95700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
130
Elongation at Break, % 34
23
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
47
Tensile Strength: Ultimate (UTS), MPa 620
680
Tensile Strength: Yield (Proof), MPa 350
310

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1550
990
Melting Onset (Solidus), °C 1490
950
Specific Heat Capacity, J/kg-K 430
440
Thermal Conductivity, W/m-K 10
12
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 65
26
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 12
3.3
Embodied Energy, MJ/kg 170
54
Embodied Water, L/kg 290
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 290
390
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 2.7
3.3
Thermal Shock Resistance, points 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
7.0 to 8.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
71 to 78.5
Iron (Fe), % 2.0 to 6.0
2.0 to 4.0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
11 to 14
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
1.5 to 3.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Residuals, % 0
0 to 0.5