MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. S32803 Stainless Steel

Grade CX2MW nickel belongs to the nickel alloys classification, while S32803 stainless steel belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
210
Elongation at Break, % 34
18
Fatigue Strength, MPa 260
350
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 84
81
Tensile Strength: Ultimate (UTS), MPa 620
680
Tensile Strength: Yield (Proof), MPa 350
560

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 980
1100
Melting Completion (Liquidus), °C 1550
1450
Melting Onset (Solidus), °C 1490
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 10
16
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 65
19
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 12
3.7
Embodied Energy, MJ/kg 170
53
Embodied Water, L/kg 290
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290
760
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 2.7
4.4
Thermal Shock Resistance, points 17
22

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.015
Chromium (Cr), % 20 to 22.5
28 to 29
Iron (Fe), % 2.0 to 6.0
62.9 to 67.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 12.5 to 14.5
1.8 to 2.5
Nickel (Ni), % 51.3 to 63
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.55
Sulfur (S), % 0 to 0.025
0 to 0.0035
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0