MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. A201.0 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while A201.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
4.7
Fatigue Strength, MPa 160
97
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 540
480
Tensile Strength: Yield (Proof), MPa 220
420

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1300
570
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
90

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 9.1
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
22
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 18
44
Strength to Weight: Bending, points 18
45
Thermal Diffusivity, mm2/s 3.7
46
Thermal Shock Resistance, points 16
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.7 to 95.5
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 0 to 11
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.5
0.2 to 0.4
Nickel (Ni), % 67 to 86
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1