MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. C97600 Dairy Metal

Grade CY40 nickel belongs to the nickel alloys classification, while C97600 dairy metal belongs to the copper alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is C97600 dairy metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 34
11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
46
Tensile Strength: Ultimate (UTS), MPa 540
310
Tensile Strength: Yield (Proof), MPa 220
140

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 960
210
Melting Completion (Liquidus), °C 1350
1140
Melting Onset (Solidus), °C 1300
1110
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
22
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 55
37
Density, g/cm3 8.4
8.8
Embodied Carbon, kg CO2/kg material 9.1
4.6
Embodied Energy, MJ/kg 130
69
Embodied Water, L/kg 260
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
29
Resilience: Unit (Modulus of Resilience), kJ/m3 130
85
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
9.8
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 3.7
6.5
Thermal Shock Resistance, points 16
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0
63 to 67
Iron (Fe), % 0 to 11
0 to 1.5
Lead (Pb), % 0
3.0 to 5.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 67 to 86
19 to 21.5
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 3.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
3.5 to 4.0
Zinc (Zn), % 0
3.0 to 9.0
Residuals, % 0
0 to 0.3