MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. 2017A Aluminum

Grade M30C nickel belongs to the nickel alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
71
Elongation at Break, % 29
2.2 to 14
Fatigue Strength, MPa 170
92 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 61
27
Tensile Strength: Ultimate (UTS), MPa 510
200 to 460
Tensile Strength: Yield (Proof), MPa 250
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 900
220
Melting Completion (Liquidus), °C 1290
650
Melting Onset (Solidus), °C 1240
510
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 22
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.8
3.0
Embodied Carbon, kg CO2/kg material 9.5
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 250
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 200
90 to 570
Stiffness to Weight: Axial, points 10
13
Stiffness to Weight: Bending, points 21
46
Strength to Weight: Axial, points 16
19 to 42
Strength to Weight: Bending, points 16
26 to 44
Thermal Diffusivity, mm2/s 5.7
56
Thermal Shock Resistance, points 18
8.9 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.3 to 95.5
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 26 to 33
3.5 to 4.5
Iron (Fe), % 0 to 3.5
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Nickel (Ni), % 56.6 to 72
0
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15