MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. 5049 Aluminum

Grade M30C nickel belongs to the nickel alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
69
Elongation at Break, % 29
2.0 to 18
Fatigue Strength, MPa 170
79 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 61
26
Tensile Strength: Ultimate (UTS), MPa 510
210 to 330
Tensile Strength: Yield (Proof), MPa 250
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 900
190
Melting Completion (Liquidus), °C 1290
650
Melting Onset (Solidus), °C 1240
620
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 22
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.8
2.7
Embodied Carbon, kg CO2/kg material 9.5
8.5
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 250
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 200
59 to 570
Stiffness to Weight: Axial, points 10
14
Stiffness to Weight: Bending, points 21
50
Strength to Weight: Axial, points 16
22 to 34
Strength to Weight: Bending, points 16
29 to 39
Thermal Diffusivity, mm2/s 5.7
56
Thermal Shock Resistance, points 18
9.3 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.7 to 97.9
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 26 to 33
0 to 0.1
Iron (Fe), % 0 to 3.5
0 to 0.5
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 0 to 1.5
0.5 to 1.1
Nickel (Ni), % 56.6 to 72
0
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15