MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. A201.0 Aluminum

Grade M30C nickel belongs to the nickel alloys classification, while A201.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
71
Elongation at Break, % 29
4.7
Fatigue Strength, MPa 170
97
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 61
27
Tensile Strength: Ultimate (UTS), MPa 510
480
Tensile Strength: Yield (Proof), MPa 250
420

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1290
650
Melting Onset (Solidus), °C 1240
570
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 22
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
90

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.8
3.0
Embodied Carbon, kg CO2/kg material 9.5
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 250
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
22
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1250
Stiffness to Weight: Axial, points 10
13
Stiffness to Weight: Bending, points 21
46
Strength to Weight: Axial, points 16
44
Strength to Weight: Bending, points 16
45
Thermal Diffusivity, mm2/s 5.7
46
Thermal Shock Resistance, points 18
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.7 to 95.5
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 26 to 33
4.0 to 5.0
Iron (Fe), % 0 to 3.5
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.5
0.2 to 0.4
Nickel (Ni), % 56.6 to 72
0
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1