MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. Grade 26 Titanium

Grade M30C nickel belongs to the nickel alloys classification, while grade 26 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is grade 26 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Elongation at Break, % 29
23
Fatigue Strength, MPa 170
250
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 61
41
Tensile Strength: Ultimate (UTS), MPa 510
390
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 900
320
Melting Completion (Liquidus), °C 1290
1660
Melting Onset (Solidus), °C 1240
1610
Specific Heat Capacity, J/kg-K 430
540
Thermal Conductivity, W/m-K 22
21
Thermal Expansion, µm/m-K 13
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 60
37
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 9.5
33
Embodied Energy, MJ/kg 140
530
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
85
Resilience: Unit (Modulus of Resilience), kJ/m3 200
580
Stiffness to Weight: Axial, points 10
13
Stiffness to Weight: Bending, points 21
35
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
26
Thermal Diffusivity, mm2/s 5.7
8.6
Thermal Shock Resistance, points 18
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.3
0 to 0.080
Copper (Cu), % 26 to 33
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 3.5
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 56.6 to 72
0
Niobium (Nb), % 1.0 to 3.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.92
Residuals, % 0
0 to 0.4