MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. C64700 Bronze

Grade M30C nickel belongs to the nickel alloys classification, while C64700 bronze belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
120
Elongation at Break, % 29
9.0
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 61
44
Tensile Strength: Ultimate (UTS), MPa 510
660
Tensile Strength: Yield (Proof), MPa 250
560

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 900
200
Melting Completion (Liquidus), °C 1290
1090
Melting Onset (Solidus), °C 1240
1030
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 22
210
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
38

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 9.5
2.7
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 250
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
57
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1370
Stiffness to Weight: Axial, points 10
7.3
Stiffness to Weight: Bending, points 21
18
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 5.7
59
Thermal Shock Resistance, points 18
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 26 to 33
95.8 to 98
Iron (Fe), % 0 to 3.5
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 56.6 to 72
1.6 to 2.2
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5