MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. C67400 Bronze

Grade M30C nickel belongs to the nickel alloys classification, while C67400 bronze belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Elongation at Break, % 29
22 to 28
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 61
41
Tensile Strength: Ultimate (UTS), MPa 510
480 to 610
Tensile Strength: Yield (Proof), MPa 250
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 900
130
Melting Completion (Liquidus), °C 1290
890
Melting Onset (Solidus), °C 1240
870
Specific Heat Capacity, J/kg-K 430
400
Thermal Conductivity, W/m-K 22
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
26

Otherwise Unclassified Properties

Base Metal Price, % relative 60
23
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 9.5
2.8
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 250
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 200
300 to 660
Stiffness to Weight: Axial, points 10
7.5
Stiffness to Weight: Bending, points 21
20
Strength to Weight: Axial, points 16
17 to 22
Strength to Weight: Bending, points 16
17 to 20
Thermal Diffusivity, mm2/s 5.7
32
Thermal Shock Resistance, points 18
16 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 26 to 33
57 to 60
Iron (Fe), % 0 to 3.5
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.5
2.0 to 3.5
Nickel (Ni), % 56.6 to 72
0 to 0.25
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0.5 to 1.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5