MakeItFrom.com
Menu (ESC)

Grade M30H Nickel vs. C49300 Brass

Grade M30H nickel belongs to the nickel alloys classification, while C49300 brass belongs to the copper alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade M30H nickel and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
100
Elongation at Break, % 11
4.5 to 20
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 61
40
Tensile Strength: Ultimate (UTS), MPa 770
430 to 520
Tensile Strength: Yield (Proof), MPa 470
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 900
120
Melting Completion (Liquidus), °C 1250
880
Melting Onset (Solidus), °C 1200
840
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 22
88
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 50
26
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 7.7
3.0
Embodied Energy, MJ/kg 110
50
Embodied Water, L/kg 250
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 700
220 to 800
Stiffness to Weight: Axial, points 10
7.2
Stiffness to Weight: Bending, points 21
19
Strength to Weight: Axial, points 25
15 to 18
Strength to Weight: Bending, points 22
16 to 18
Thermal Diffusivity, mm2/s 5.7
29
Thermal Shock Resistance, points 27
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 27 to 33
58 to 62
Iron (Fe), % 0 to 3.5
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 0.030
Nickel (Ni), % 57.9 to 70.3
0 to 1.5
Phosphorus (P), % 0 to 0.030
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 2.7 to 3.7
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5