MakeItFrom.com
Menu (ESC)

Grade N7M Nickel vs. EN AC-41000 Aluminum

Grade N7M nickel belongs to the nickel alloys classification, while EN AC-41000 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade N7M nickel and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 22
4.5
Fatigue Strength, MPa 190
58 to 71
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 85
26
Tensile Strength: Ultimate (UTS), MPa 590
170 to 280
Tensile Strength: Yield (Proof), MPa 310
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 320
420
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1650
640
Melting Onset (Solidus), °C 1590
630
Specific Heat Capacity, J/kg-K 390
900
Thermal Expansion, µm/m-K 9.9
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.3
2.7
Embodied Carbon, kg CO2/kg material 16
8.2
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 270
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 220
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 18
18 to 29
Strength to Weight: Bending, points 17
26 to 35
Thermal Shock Resistance, points 19
7.8 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
95.2 to 97.6
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 3.0
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.0
0.3 to 0.5
Molybdenum (Mo), % 30 to 33
0
Nickel (Ni), % 60.9 to 70
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
1.6 to 2.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15