MakeItFrom.com
Menu (ESC)

Grade N7M Nickel vs. C83600 Ounce Metal

Grade N7M nickel belongs to the nickel alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade N7M nickel and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 22
21
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 85
39
Tensile Strength: Ultimate (UTS), MPa 590
250
Tensile Strength: Yield (Proof), MPa 310
120

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1650
1010
Melting Onset (Solidus), °C 1590
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Expansion, µm/m-K 9.9
18

Otherwise Unclassified Properties

Base Metal Price, % relative 75
31
Density, g/cm3 9.3
8.8
Embodied Carbon, kg CO2/kg material 16
3.1
Embodied Energy, MJ/kg 200
50
Embodied Water, L/kg 270
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
43
Resilience: Unit (Modulus of Resilience), kJ/m3 220
70
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 18
7.9
Strength to Weight: Bending, points 17
10
Thermal Shock Resistance, points 19
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 0 to 1.0
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 0 to 3.0
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 30 to 33
0
Nickel (Ni), % 60.9 to 70
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7