MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. AISI 347 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while AISI 347 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
160 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
34 to 46
Fatigue Strength, MPa 350
220 to 270
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 710
610 to 690
Tensile Strength: Yield (Proof), MPa 540
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
870
Melting Completion (Liquidus), °C 1640
1430
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
16
Thermal Expansion, µm/m-K 9.1
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
3.6
Embodied Energy, MJ/kg 670
52
Embodied Water, L/kg 270
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
150 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
22 to 25
Strength to Weight: Bending, points 39
20 to 22
Thermal Diffusivity, mm2/s 3.3
4.3
Thermal Shock Resistance, points 52
13 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
64.1 to 74
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.050
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0