MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. C355.0 Aluminum

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
86 to 90
Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 17
2.7 to 3.8
Fatigue Strength, MPa 350
76 to 84
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 710
290 to 310
Tensile Strength: Yield (Proof), MPa 540
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 410
470
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
620
Melting Onset (Solidus), °C 1590
570
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.2
150
Thermal Expansion, µm/m-K 9.1
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
130

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 41
8.0
Embodied Energy, MJ/kg 670
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
290 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 44
30 to 32
Strength to Weight: Bending, points 39
36 to 37
Thermal Diffusivity, mm2/s 3.3
60
Thermal Shock Resistance, points 52
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
91.7 to 94.1
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
1.0 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
4.5 to 5.5
Titanium (Ti), % 92.5 to 95.5
0 to 0.2
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.15