MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. S40977 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while S40977 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
21
Fatigue Strength, MPa 350
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 710
510
Tensile Strength: Yield (Proof), MPa 540
310

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 330
720
Melting Completion (Liquidus), °C 1640
1440
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
25
Thermal Expansion, µm/m-K 9.1
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
1.9
Embodied Energy, MJ/kg 670
27
Embodied Water, L/kg 270
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
18
Strength to Weight: Bending, points 39
18
Thermal Diffusivity, mm2/s 3.3
6.7
Thermal Shock Resistance, points 52
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
83.9 to 89.2
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.050
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0