MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. ACI-ASTM CF20 Steel

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while ACI-ASTM CF20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is ACI-ASTM CF20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
50
Fatigue Strength, MPa 200
240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
530
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
970
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
16
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
3.1
Embodied Energy, MJ/kg 840
44
Embodied Water, L/kg 520
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
220
Resilience: Unit (Modulus of Resilience), kJ/m3 440
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 8.9
4.3
Thermal Shock Resistance, points 30
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.2
Chromium (Cr), % 0
18 to 21
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
64.2 to 74
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.050
8.0 to 11
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0