MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. C95410 Bronze

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while C95410 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 17
9.1 to 13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 390
620 to 740
Tensile Strength: Yield (Proof), MPa 310
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 420
230
Maximum Temperature: Mechanical, °C 320
230
Melting Completion (Liquidus), °C 1660
1040
Melting Onset (Solidus), °C 1610
1030
Specific Heat Capacity, J/kg-K 540
440
Thermal Conductivity, W/m-K 22
59
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
14

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 49
3.3
Embodied Energy, MJ/kg 840
54
Embodied Water, L/kg 520
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 440
280 to 630
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 24
21 to 25
Strength to Weight: Bending, points 26
20 to 22
Thermal Diffusivity, mm2/s 8.9
16
Thermal Shock Resistance, points 30
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
83 to 85.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
3.0 to 5.0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
1.5 to 2.5
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0 to 0.5