MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 1200 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
23 to 48
Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 13
1.1 to 28
Fatigue Strength, MPa 260
25 to 69
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 500
85 to 180
Tensile Strength: Yield (Proof), MPa 430
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
660
Melting Onset (Solidus), °C 1610
650
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
230
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
58
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
190

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 49
8.2
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 880
5.7 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 31
8.7 to 19
Strength to Weight: Bending, points 31
16 to 26
Thermal Diffusivity, mm2/s 8.6
92
Thermal Shock Resistance, points 39
3.8 to 8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
99 to 100
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0 to 1.0
Titanium (Ti), % 98.8 to 99.9
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.15