MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 295.0 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
60 to 93
Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 13
2.0 to 7.2
Fatigue Strength, MPa 260
44 to 55
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 500
230 to 280
Tensile Strength: Yield (Proof), MPa 430
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
530
Specific Heat Capacity, J/kg-K 540
880
Thermal Conductivity, W/m-K 21
140
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
100

Otherwise Unclassified Properties

Density, g/cm3 4.5
3.0
Embodied Carbon, kg CO2/kg material 49
7.9
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 880
77 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 31
21 to 26
Strength to Weight: Bending, points 31
27 to 32
Thermal Diffusivity, mm2/s 8.6
54
Thermal Shock Resistance, points 39
9.8 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
91.4 to 95.3
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
4.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0.7 to 1.5
Titanium (Ti), % 98.8 to 99.9
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0 to 0.4
0 to 0.15