MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 4006 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
28 to 45
Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 13
3.4 to 24
Fatigue Strength, MPa 260
35 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 500
110 to 160
Tensile Strength: Yield (Proof), MPa 430
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
620
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
220
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
56
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
180

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 49
8.1
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 880
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 31
11 to 16
Strength to Weight: Bending, points 31
19 to 24
Thermal Diffusivity, mm2/s 8.6
89
Thermal Shock Resistance, points 39
4.9 to 7.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0.8 to 1.2
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.4
0 to 0.15