MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 5083 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
75 to 110
Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 13
1.1 to 17
Fatigue Strength, MPa 260
93 to 190
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 500
290 to 390
Tensile Strength: Yield (Proof), MPa 430
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
190
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
580
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 8.7
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
29
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
96

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 49
8.9
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 880
95 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 31
29 to 40
Strength to Weight: Bending, points 31
36 to 44
Thermal Diffusivity, mm2/s 8.6
48
Thermal Shock Resistance, points 39
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
92.4 to 95.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.4
Magnesium (Mg), % 0
4.0 to 4.9
Manganese (Mn), % 0
0.4 to 1.0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 98.8 to 99.9
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15