MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. ACI-ASTM CA6NM Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while ACI-ASTM CA6NM steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is ACI-ASTM CA6NM steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
250
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
17
Fatigue Strength, MPa 260
380
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 500
850
Tensile Strength: Yield (Proof), MPa 430
620

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
770
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
3.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
2.5
Embodied Energy, MJ/kg 840
34
Embodied Water, L/kg 520
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
130
Resilience: Unit (Modulus of Resilience), kJ/m3 880
1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
30
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 8.6
6.7
Thermal Shock Resistance, points 39
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 0
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
78.4 to 84.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 1.0
Nickel (Ni), % 0 to 0.050
3.5 to 4.5
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0