MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. ACI-ASTM CF8C Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
150
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
40
Fatigue Strength, MPa 260
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 500
530
Tensile Strength: Yield (Proof), MPa 430
260

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
980
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
3.7
Embodied Energy, MJ/kg 840
53
Embodied Water, L/kg 520
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
180
Resilience: Unit (Modulus of Resilience), kJ/m3 880
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
19
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 8.6
4.3
Thermal Shock Resistance, points 39
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 0
18 to 21
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
61.8 to 73
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0