MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. AISI 317 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while AISI 317 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is AISI 317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
170 to 220
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
35 to 55
Fatigue Strength, MPa 260
250 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 500
580 to 710
Tensile Strength: Yield (Proof), MPa 430
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
590
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 49
4.3
Embodied Energy, MJ/kg 840
59
Embodied Water, L/kg 520
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
210 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 880
150 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
20 to 25
Strength to Weight: Bending, points 31
20 to 22
Thermal Diffusivity, mm2/s 8.6
4.1
Thermal Shock Resistance, points 39
12 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 0
18 to 20
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
58 to 68
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.050
11 to 15
Nitrogen (N), % 0
0 to 0.1
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0