MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. EN 1.4110 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
11 to 14
Fatigue Strength, MPa 260
250 to 730
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 500
770 to 1720
Tensile Strength: Yield (Proof), MPa 430
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
790
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
3.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
2.3
Embodied Energy, MJ/kg 840
33
Embodied Water, L/kg 520
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 880
480 to 4550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
28 to 62
Strength to Weight: Bending, points 31
24 to 41
Thermal Diffusivity, mm2/s 8.6
8.1
Thermal Shock Resistance, points 39
27 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
81.4 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 99.9
0
Vanadium (V), % 0
0 to 0.15
Residuals, % 0 to 0.4
0