MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. EN 1.6554 Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
230 to 280
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
17 to 21
Fatigue Strength, MPa 260
380 to 520
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 500
780 to 930
Tensile Strength: Yield (Proof), MPa 430
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
420
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
40
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.7

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 49
1.7
Embodied Energy, MJ/kg 840
22
Embodied Water, L/kg 520
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 880
810 to 1650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 31
27 to 33
Strength to Weight: Bending, points 31
24 to 27
Thermal Diffusivity, mm2/s 8.6
11
Thermal Shock Resistance, points 39
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0.23 to 0.28
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
94.6 to 97.3
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.050
1.0 to 2.0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.8 to 99.9
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0 to 0.4
0