MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. Nickel 22

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while nickel 22 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is nickel 22.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 13
49
Fatigue Strength, MPa 260
330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
84
Tensile Strength: Ultimate (UTS), MPa 500
790
Tensile Strength: Yield (Proof), MPa 430
360

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1390
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
430
Thermal Conductivity, W/m-K 21
10
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
1.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 49
12
Embodied Energy, MJ/kg 840
170
Embodied Water, L/kg 520
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
320
Resilience: Unit (Modulus of Resilience), kJ/m3 880
300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 31
21
Thermal Diffusivity, mm2/s 8.6
2.7
Thermal Shock Resistance, points 39
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.015
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
2.0 to 6.0
Manganese (Mn), % 0
0 to 0.015
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0 to 0.050
50.8 to 63
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.9
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Residuals, % 0 to 0.4
0