MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. C42200 Brass

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while C42200 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
2.0 to 46
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 500
300 to 610
Tensile Strength: Yield (Proof), MPa 430
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 420
200
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
1040
Melting Onset (Solidus), °C 1610
1020
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
32

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 49
2.7
Embodied Energy, MJ/kg 840
44
Embodied Water, L/kg 520
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 880
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 31
9.5 to 19
Strength to Weight: Bending, points 31
11 to 18
Thermal Diffusivity, mm2/s 8.6
39
Thermal Shock Resistance, points 39
10 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.35
Tin (Sn), % 0
0.8 to 1.4
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0 to 0.4
0 to 0.5